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ABSTRACT:

The main purpose of this thesis is to investigate the
relation between two well-kmown logical systems. It was
ny intention to make precise the idea and prove the equiva~
lence of the simple theory of types and Zermelo metetheory.
Instead of this I have succseded in proving s strong theo-
rem from which it follows that the two systéems are not equiv-
alent under any reasonable definition of "equivalent.®

The relation is then considered between extensioms of
both systems. A matural series of stronger and stronger lo-
gleal systems is presented. The problem of truth-definitions
‘is Taised and completely solved for all these systems.

Chapter 1 contains a clear statement of the problem and
a summary of results. Chapter 2 contains the results concern-
ing the two basic systems, while in Chapter 3 the series of
systems is constructed and the previous results are extended
%o all thess systems.




1. The problem.
1t .
An.e an are terms of type my, ng, and <nys

wwben 1 use & word,” Humpty Dumpty 2sid then
P ks "Just what T chosse it te mean, =1 N | R
5. The sets of w.f.f. end of terms of type n are the

' Thexe ave two fundaw italiy aifferent ways of avoid- smaliest sets having all four of the sbove proper-
| ing the vicious-circle parsdoxes. One method leads to ties,

the theory of types, the.other one to set-theory. There
! Convention:
| sre many varlants of both systems. We enall study & typi-

m of each kind: (1) T is @ systen wsually describ- i &5 By er 8Fe used to stard for veriables with sub-
sorip

a1 syste
4 a8 = singulery theory of types of type & - 1t ie & sim- a3 t n
: . B, .. ere used to st
ple (not remified) theery of types having only one-place . A - o stand for terms of type n.
i . LB ... are used to stand for Wef.T
predtontes in it, but of all finite yPes. This system is o Lt G
| e introduce all the 3 s
i a8 strong as tne Russell-Tritehead system. (2) Z is & sys- usual abbreviatiors. Iz particu-
lar we introduce the abbreviatiom

4am of set tbeory based on Zermelo's: +the main ideas of its

| = 6
Qm, = lb,;_‘ to stand for EC“; a""‘"]E‘_EC‘“—J’m]

' formalizetion are due to skolem?

ne logical systen T.¥
where ngsmex(ny,ny} 4
3 ENE 2
resssts svmmers Aop R 6 L1~ = (@my) -+ - (o
- Y, U (=0, brerf 3 0 ) to stand for the Tesult
- o : B, v - » of replacing all free
w.f.f. snd terms of type nsS  (Definition by recursion.) : b} i ‘(’:ugf;nci kh
; ) (E=1y00es
. " | gt 3
1. If a, is a variavle with subseript 1, then (ap) i3 H 4, Simatte usly
o term of type T §
On to stand
2. If 8, 1s 8 veriable with qubseript » and iz 2 : ® for  LXawus VQ—«,..."’EX,.}«.J
ator.y then (bagshe) is 3 term of type M. l {@aliad  to stant for U Cumuy [Coupibn ] =
5. 1fok, B ave w.f.f. amd a I8 @ arisble, then o S
don= an V=t

a1, (A%, [ Yo d] are wfefe
' S i | SRR LR




Axiom schematat

A

(2) A‘DA:B >, AN B

@ [Ha k1D LS AT nsn 2 BIREL

@ [ Uran)(@n) Zao (Cam)0)] 2 Dl = Cund

o7 [damk] DS ED0A] BIENR TR

(& [VYaw ~A12 [amA)=0a] n>o. ,

o [As=. 312 [(vamt)=(ta-B)] .

TS § A LN [t (2nile

@ Jau Teor Yo [~ [(@a)(<Hayae®)]T4 Ve L3
[(@)(do)Dyy (@s)(<€o,do>) g, (@3)(<e.,¢=2)1D
34, [lo-2) (<G, F>) = g (@911

Rules of inference:

[1] From A e [ADB]  nrer R.
[1z] ®rom s imfer [Yauw®k] -

A jbstitution instance
mere s 2 UVCE & teutolosy:

a, is not free in A

By ROt Eree iP ;4‘}

The logical system 2.8

Primitive symbols: Xw, gws
variables

,65 6% L 1~
S Y% v

(Definition by recursion.)

(wz0,l,..)
wofot. and terms:

1. If a is & variable, then (8) is a term.

2. 1f & is & varisble and Ae aw.f.f., then (Lagh)
is a term.

3.

12 A ,D are w.f.f. and a is a varisble, then

[l [ADRI, [Yarl we e
4. If 4, B are terms, then EB&PQ 18 & w.f.L.
5. The set of W.f.

. and the set of terms ave ths
smallest sets having all four of the sbove pro-

perties.

Gonvention:
8y by eee used to stand for varisbles.
As By vee used to stand for terms.

Acs B, . used to stand for w.f.f.

We introduce all the usual abbrevistions; in particular:

211 free ocourren
of (ag) {i=1,
By Ayy olmiy

for &11 1, in

a=b stands for [G€CIEH [Bec]
S(a.,)... () stends for the result of replacing
TR Ak AI
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o to stand for  LKe+ Y60~ L’;,Ex.]
(o) o stant for L celb=z, . CEX

Axiom schematas 10

- 15 = supstitution
@ A e A DTS

) A;,,:&:AD@)V;.‘B
(5 [Vadl 2 [s% Pl

& not free in A'
28t fiserigell |
@ [ueﬂ»;;-éc]: (L=c] )
o variable ias frel
@ [3ad10 L5 DAl EEE
@ [Va.~¥1Dat)=0]
™ [AezaB] SLear)=(ra®)]
(ay) Yeauddn ﬂ:ely-a‘.cem#—).‘
(63 VarVirFc, diec=y, d=a va=hb
(89 Voo Fbm c edrz Bd. ced L s
(8 Voo 3dn ce bz cgaEL reiss
EC D .=
() 3o, Oea &, breay. L Ceq:

© not free iz

- Eiix‘:::”.,& wa [ADR] inter B .
fa1] wwem A iofer CVadl -

i

It hes been generslly believed that these two systems
ave equivalent. This concept is ambiguous, but the people
who stated that these systems are equivalent left it smbi~
guous. Ve shall prove that these systems are not equivalent,
and we will assume the buzden of proving this for sny veason-
able meaning of "equivalent.® N

One possible meaning of equivelence was made precise oY
in a previcus paper.l? This equivalence makes the concept
wequally good for formelizing mathemstical systems® precise.
ie o consequence of Corollery VI that T and Z are not equiv-
alent inthe above semse; namely, there is & set of inmtegeTs
expressible (definable) in 2 but not in T .

But the concept of equivalence often takes another form.

It ie sssumed that there is & method of “translating® w.f.f.
of one system into the other system in such a way that meaning
is preserved and that theorems go into theorsms end mon-theo-
rems imto This is

vy of
®Anything that can be proven in T can be proven
in 7, and viceverses.”

the forme
We will show that the first part

of the statement is true, but that the "vice-versa" ic false.
To make this precise, we introduce a method of transliation
from T imto Z which preserves meaning {the only possible trans-

lation sccording to the imtended inmterpretations).



transistion from I %o Z:

The §
1y, by we
1n 7 we can define sets Y (n) recursively

xnown methods, 1% so that

Y (0)=0
\V(M.)-?Hm) B
rand for LXo+ o EXKe Ty, %07
e il s 2013 z.,e%.a & o€ (20)

the interded
It follows from (9) thet W(w) nas =11

propertiess (9) is sotvally couivalent to
%) Y()#0-
Y(uaem) recursively so thet
- ¥ (or0) = P ()
- P (weme) = P4 ()
et 5 stant 2ot [0, € ARy B

We aefine

rres-
or every term A (w.f.fe A- ) of T we define & oo

follows (bY recursion)s
% (watofe A¥) of 238
ponding term A

1. (e is (25}

a- ¥
2. (Law A v (Lm. T )

i

[~A2* .
[ADRI* .
[Vansl® 1s [ Yow. T D]
LARBwT* [Bi €Akl

For every w.f.f. A of T we define a w.f.2. Af of z:

[~ #*]
[a¢ D 2%]

1f A has tfie free variables an s..-s oy, s then A
s LLO o - ek TEN1D *
Qe oo Oy
1¢, in particular, e has no free varisbles, them A s A

A 15 the transiations of Ao .

It will be proven (corollary II) that if Ar is a theo-
rem of T, then A is a theorem of Z. But there s & mf.fs
oz, C g+ Which is not o theorem of T (sssuming the consis-
tency of T), but whose translation, C;, 18 a theorem of Z.
This should be sufficient to establish that the two systems
are not equivalent, but that Z is in a definite semse ®strong-
er® than T. i

But someome might object that we considered only one
method of translation--cven if it is the matural ome. So we
shall carry out & more gemeral comsideration. If there were
2 translation from eme system to the other carrying theoTem
into theorem and non-theorem into mon-theorem, them we could

prove that one system is consistent if mnd only if the other




one dg; we shall call this equiconsistency. Fquiconsistency
seems like 3 i pimum rsqui:emenc for equivalencs. By equi~
consistency one vsuslly meens & proof in am elementery syEten
(2 system Just strong enough to SeTVE as a symtax 1anguage)
+that the consistency of either system implies the consistency
of the other. Hot only is this 4mpossibles Yot we shall prove
the stronger result that equieensistency cannct ever be proven
4in the strong system Ts unless T and Z are Doth 1ncunsist.ent
(Corollary V). Ve may aun this vp ¥ saying that T and Z are
not ex;usvalent in any senses upless they are both inconsis-
tent--which is hardly what was meent by the people who believed
these systems to Te equivalent.

on the contTarys it is shown that Z is strongeT then T
both in the semse of our being 2ble to prove more theorems
in 7, and of bsing able to define more nathematical entities
[CN-20) sets of integers) in 2. On the other hand, since the
conpistency of Z inplies the cousistency of T {corellary 4)s
b mot vice-verse, we mey say thet T is & wsafern syatems
It is mow jnteresting to see which of the theorems which have
been proved inm Z cab also e proved in Te

The mein ntool® used in these proofs is & truthedefini=
tion for T givenm within 2. The fact thet this is possible

uiresdy shows that 2 is SETOTEST tren T4

10

03
For the sske of completeness, these results are extend-

ed
o & series of systems. Ue arrive at a naturel seTies

. -
of transfinite type- (axd set-) theories, each ome of which
(from o certain system on) is sufficiently stronger than

11 previ
all previous systems to allow a truth-defimition for a1l

the i
previous systems. These results give us ap insight into

the relaticn betweer the ectersions of T and Z. They alse
. s

ive 1
give us an elegant systematic method of introducing stromger
end stronger logicel systems.
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. T oznd Z-

wand if you take 1 from 365, winat
remelnsgt -
w364, of couUTSE.
wmpty Dumpty looked goubtfule . 1
it Tather T b thet done om Faper,” he said

e now procsed to give truth-definition for T in Z-

> i tion.
sruth is defined by means of & concept of sstisfactio

Inerefore, our Tirst task is = formal defimition of setiss
e . <

raction.

By

the

of T. W wiil stand fer :

w£.f. of T 45 zepresented in T BY a7 in

representied

e XS
o175 metnod we assign sn integet to sach .

gth w.g.f. of T. Thus each

eger. But while

¥ propoei ressed
\W n is wepresented BY B the proposition W n is expre
m expressed

inz by Whe These few wemaTis will meke the meaning of the
z oy Wae

e
theorems to be proved clears Wwe enumerate the verizble

et vy Btand for the 8 varisble.

and later of truth, will

The definition of satisfactlon,
be given in the system 2. We skall define a set W= » SUCB
thet [me‘ﬁ-] expresses in Z that Wy i true, we shall
aefine o reletion of satisfaction on level sizer. I¢ is
relation between a X-tuple x, end an IntemeT B x setisfies
w4z W has no other variables than i Ty o

ex (18250 00sE]
o comstructed that 1t3 1t memver (i

if xis @

xetuple =

Ating the
the set corresponding to the tYPe of vy, and 3 putting

12

1th member of x for every free cccurrence of vy makes W/

true. This corresponds to our intuitive rotion of satisfac-
tion, except for the licstions cause’ y the
x.

But without this sdditlonsl parameter the definition iz mot
possible.

4 relation in Z is expressed by 2 set of ordered pairs.
Satisfactior oft level k will be expressed by the set of
ordered psirs S(k}. I.e., "x satisfies m% iz argressed by
T LKy E S{K) " S(x) mist be defined recursively.
There are seven u:

conditions to the

aifferent vays of forming w.f.f. 35(k) is defined ae the

smallest set satisfying elli these conditions. Tkis is done
by the usual method: we define 8(k) as the set such that y
belorgs to it if and only if y belonmgs tc every set sstisiye
ing the seven recursion conditione.

The formel definition is much too lengthy to te given,
unless we inmtroduce abtbreviations. On the following pages
we give a list of abvbreviations which will be used through-
out this chapter. Ve zake use of the well-knowr metathecrem
that every primitive recursive function and relation ie cal-
culable in the system 2.16 Thus we feel free tc introduce
abtbreviations for the w.f.f. expressing such funeticns or
relations without actually writing down these w.f.f.



(S, mn et % o tho mo. oF
; R 3( Je ) expresces 4n T that X is the mo. of & prook

S T
Tems:lv

3&«:1: () v oma o kr W
i . for  the type of V1r
“‘ 1“‘ stands in Z 10 - s . ﬂtwt () . P ‘—; Wq{-.,
" A e apen ST
\ =) ;Czis’l‘"mﬂg Yw+T2) * Cr+ w woe_ w mis consistent
Iy PR e highest ¥ sucl that
g Ko : “x o cects i Cz w womom oz is consistemt
i PR e 1th member of tLI& .
i N2 5 x) " Efusle = £0 F(L)w) exprosses in Z that vy is free in Wiy
. R PR the element of E(X)
| D% 2,8) ‘;‘;;““h"‘alsh“miéfepi?c Bd (£;m) 4 me m vy is howmd in W
! % by te
i Negy () e e mene.or DYWel Sl lybagwm) = e Wi § (vu) W’“J
&3 gy - e e L) =(0ef . SlamBylymgma) = == o Wote 5 i Vel
i
: 10 £ Ac (wo £y Layma) = vt Wi is gotten from W
XX [i%e,) (%.)] by changing the bound
- cesses in Z that Wy 15 . vari V1, %0 Tip
-y (M.,E.‘,ﬂ..) e"‘”sn e Wass LOVENe)W " and that vy 1s not
e,_(M)Rv. L) free in Wy end thot
ey Tt Wa Ll 72, does met) soour 1n
v
?E"" Ty e e W LM Wy
Ryt i

s (g e e DMV s e [[3238, Gl 42 %
L W [WenDWe] Wit ey %) € MLy, &, %)] DG € 2]
D myrry™2) = x EY)
e e Wate [0z, Wen ] Feop® o0 L0338, I, € (min By, a)
Yy L) = g * MLy by X,) € (LELKD (R Xy 80 Y),

) €2])1D €7D
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Reckz storas ror [LILTLrFmy, €5l 2w, 2,)
o (6 [<D Uy xytut),madel) €
M2y, x )] 23 €ED

e’z . [[ 32,38 Foma Tma Ey(y ™ s
. 2, sl (BLKDU Xy By lims ez])
. (wrwm,a.,/zuw),ws-z:lnsg.s;
Recgs = [[3Awma. o (o, iy &~ [€Xpmayer T2 36
eds L[ 3w By, Dz a) [<xymai
° 52]3[<x,)m,>é-z-]]33-5%3 .
L [[3G 3w VO h TE
! Yoot T, )2 DU Ry Lust)y > calogied
nects \ LG = <Rymade & € SRS Ko, <A
LRechz & Reclz o « -4 Reck
% Yy

s L w gevm geERe)d
Rec®zD, g€l

§
3y the subset and deseription sxtome:’’

b ne S0 =5, 3€ (£(Kxed) & Rec"e 2,362 E
}
X\

By the msual methods of recursive defd:

rition, we got

seven theorems corresponding to the seven recursion coMditions: |

a

16
see s FLkew o€ Loy By, 22)] D, Hymd £5(K)=,.
Ko £k & XE S0k) LML o x)€ M, KX

neo 2 FLkESL 4 € (g g iy £0)] D Xy am> €S (KI5
Kan Ek & XE ()M (L, Je )€ (VE C
DK, XLl ™2 estn]
oo 31 | [keow & €a G @y meyy £2012.<%) € S(K)Ex.
Ko £ k & xEZ(KIHL(HRD (k% £2s))
> €S(K)D) e MLy k,x)]
moc 4 b Lkeo & €4 (W’L‘l”"‘zl‘l””x)JJ, <X,n>e5(k)§,,
Ko € kb XE S(1) & L(ELLD (kX £ 82y >
€SI e (e <Dk % Lyt > sl
nec 5 pLkEW@ 4~ (wy m) 1D <xym> es(k)=y.
Kom &1k XE S(k)d ~ [<HmdE sk)]
 Ckeo & 20 wywa) ] 2. K> € SO
Ko Lk exeB(RE <% € S(K)D. S €Sk
Ay EXS Satidd Stk
)+ [tev+Te) -

Rec 63

plkew & V(e

Kon &K & XE 2
Pl xR )y > €5C)]

®eo 71
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ms about Z will be proved in English, bub

zable in any system
adequate for Aritmmetic (S-Z.s 7). They will be mumbered

Aetatneore
in such a way that they ave formall

by Roman mumersls.

overy pair of integers X, @,

Lemma I. For &
}-<x,w->es(k)§x. xeZ(k) & K Sk

O (V) nl

3 P\(\,k,x) s Ml kX

By the length of a w.f.f. we understend the

Proof:
o of ~y D, Vhand Lo

umber of oceurrence Proot is
by induction on the 1ength of Wiy
Length =0- W, 38 [(v1 )(vlz)J
€ (wny £y 8)
W; 1o (v ) €(n)

Lemm follows immedistely from Rec.

Assume for length & 8¢

Length = s4-1. There sre six cases.

e

18

case 1., W,is A~ W,
b~ ('w\-,m.;
Wm‘h.as length s, hence bty assumption:
b ) € SCK)=,. X€ ZCk)eL Koney Sk,

$ M(I,A,x) A

b <Xym>eS(k) ey, XEE(k)H

Ko &k 4. ML <Xm> es(w](m Rec- 5)

b Kew kD Ko, ¢k

L XeZ (k) Kutkt

< Xym> € S(k) =y
Wl

w)
LD may k% -

But ~[ S (\ ka) Wm.J] is the same as

3
S.m\,k,)x)...["'wmﬂl wa [WaR] 1 Wak.

Hence Lemma.
case 2., Wy 15 [ W DWenn]
Proof exactly analogous, only it uses Rec.

of Rec. 5.

6 in place
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case 3., Wgis [ ¥ vz, W]

bV (s 2y w400)

wmlhas length s, hence )
L XE i(k)zt Kow Sk
LWt

b <X, m.> € 5(k)=
snumxl .
F K Xym> €S(K)Z,. XeS(K) &+ Kmskd

te Y(e+2,)2. <Dk, xL,t), (B Reer T
> € S(k)

xe3(k), K &k, T€ PotTz,) F Keudk

" y—jD(k,x,JL,J‘s)ai(k)
i k('D(k,x,l.,t),m.} ES(ka):, :
@t |
S Mm%, wak, |
n }-<D(k x,JL.,t),moeS(k)a.
@ ) @",‘)Waf.l ‘
$mt,h,x> L e MU \:: :
xez(k)at K,.s
I—<$)m>e5\k)=, o, (,,,h) b w:}
P ErTI Sniho: 6 AR

20
b <xm>eS(k)=,, xe E(k)+ K gkt
@) ) (v *
Vg, € W+Te, )0y, Snepn - @) “Eblax)w

F <Xmmd e S(K) 2y XEER) &+ Kaugk &

St“’n)

‘ *
T ML W l (sines 7y te rot £ree in w*

Hence lemma.

The last three cases are 50 similar that me prove omly a
typieal ome.

case 4., Wy s [ L, Wi )(v1)
Proof similar to case 5. Using Rec. Z.
case 5., W s L(vlll( ijzwm‘)
b€y (m, Lu"“’"u Z.)
W,_._l has Iength s, hence
F<x,m> € 5(k)=, . xez(kH- Ko $ k&
(v »
$n(uk,x) Lol
F <xympe S(K) = Xe £z 2o 3
& Kow €k, (EKD (G X 22, E), w0 > €
s(07) e Mk X) il
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Ke £, Kuw bk b Ku &k

= Dk, X, £a,® v)eglk)z t€ Ylwa+Tz.)
"

5(k)= e ‘y(u+ﬁ-1)““

T e («n..) Wil

k
sr\tl,k,") M(‘Q 0
et e

)
b <P m>eSME2 neplgn o6+

) [v2. eW(e+rz)+ wr]|
Mlok®) 0
b (i I<ymp €K1 (w5 néio ‘
\}
! @) P [ e qlzu-r‘l’u)*wm,]ﬁ
@) o MOD TT e or aceor. n.xicr)

NG [<Dymy> € 5(01)= (w2, L Smu oo |

—oEmy e 8 [ e%wn.)mell
- (VR YW

¥7)
u \-(DCE<D)“"")ES(I‘)J)_ DM X) -

Mﬂ) (u\};’w‘.‘)l (simoe vy mot free in last term.)
X & £ (ke Kbk S

W, Wan,

s(k)z i
b LKy € X" € MEykox) a

F<x,mdpeslkle, XeZ(k)d Kmkd
2 [ Wae, Ve 5%
Hence lemmus.

cose 6.y Wots [(um Woll v Wo)]
d 1 Wl 2"
Proof similar to case 5, TUsing Rec. 4.

Fence lemma follows by induction.

Q. E. D,

Tr 22 (2. jezs, gewd xeZ(K;) 3,
<07 S(Kg )

By subset and descrinption axioms:
FaeTe 5, Gee 4 Xe 2(Ky) 25 <x,35€ 5(Ky)
I. Tor every irtager m, b wn €T = Wik,

F K € K

(m is now a fixed integer)
b <Xym> € SKw ) =4, X€ Z(Kan)d.
s ™) © i) 2 ]

T ML Ky XD #20 M(Koy Koy X)

Tet vypeeervy PR the free varisbles of Wm.
EF I

(remre 1.)

zet Br(x,7, 4ene

e ) ese thet x is the
sug ) smpress

—tuple whose 1" member is vy; x is a varisble ot yeb nsed-



i o €T,

meTe )

meTe
" - 3“‘."‘51er£7'-+.“+‘”-“'_]
J— = Wi
. - LT 4Ty ]:‘,i““,,.% o
T (Simoe oniy these are fres in W)
FwmeT D Wan

"

[\

Wi, X€ 2 (K) b L2 Koy X)E W“’*’T“) 1404

23

L_'u?* . ‘#1-7::])*(")"77)"'4%“) kxe Z(K”)

- <xXm> € S (Kan)

W) W
% §m€?-,»0 nm..fwmv il i
- WX

[T+ T [ax Aoty 9+ Vi )] D W

*
\\ »}-W»\-—

W |
- [T o Tomd Do

r'|(1-\o"“""7’0 wal
wiki

%)
k3 mzc.vn..«,x)
)

L me
D M Kk (e

(since others are mot free in Wi I

Wa ; X € Z(Ka) b €X, > €5(Kur)
W F #n. e Ton

{See above)

Lk meTr=s Wi

Q. E.D.

We shall prove only ome typiccl ome of the corollaries

of Thm. I. (For others see Tarski.)3d

Corollary I. For every m, 1f W has no free varievles,

b [meTe v NegmieTr]
Proofs

v kWl vvwi]
sinee W, has no free variables,

1 /
[~ WaJse "JN-}(W

i /
I—LW»«- v WN:}gw]
F meTeE Wan (Tam. 1.)
b Neytou) €7 = Wy gy (00 1)
Wk [meTe v Nemew) €001

Q. E. D,

For fized m, such that W has no, free vars.
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Before proving the next theorem, it is conveniemt to
put down & few lemmas. The first three arc lemmas about

2 which follow dizectly from the axioms.

gor every wof.f. Ap , 1f G not free in A

26

Lemma IV.
if mo verise

(A0, S (8254
ble free and bound iz de .
Immediate by deseription axiom.

Q. E. D,

Lemma II.

ant k> ke b kEOF k€D D, T i
) o The following le £
AR A_G\"‘H.‘L‘)a;,z,en-is‘— mnas are formal theorems about S(k), v
zemma 5. b kew D <X, m>e D(KID
L <X 1D, X#£0.
Proof: | bea 24, beVork) st (S .
Ja - ) Sxiom) oot kees b ~u, 0€Z(k)
since tuis @ is a subset of W(ea+Ka) R <Xym>€e SC) D, X € Z(K)
o3 . end k€ ky, then @ w
i k€ x€ ky €¥(urk), | N <Xwmd€ S(KID X#0
Lemms follows immédistely. e B D
Q. E. D. N
) The remaining lemmas express obvious facts about S(k),

Jomme ITT.  For every term A, wef.f.#, if G mot free i Te . However, their proofs require (formi) intuctions

4n either ome, and mo verisble free and bound | on the length of Wy, which would take up teo mch space.
i
. . _1n A . Fce (ta[bea=y. lre A ) The Teader will find no difficulty in supplying the proofs,
- Q. 1f he e
4*])- . ceAq_ 'S((C;A—I‘ é e wisheg to try it.
| gema . b kewD N F(Lwm)D tEYenrT2)D
proors Ja, br€a. =g AehdA (opeet 1

Lomm follows by description axiom.
Q. E. Do

<ty €5 (k)=,.< Dk, x,&5),mDe S(k),
zoma 7. b S (o, L Loy ) D, Kawe € kb Koy £k,
~ B (£a)nn) D, <X, > €5(K) 5.
<Dk, X) £y, ML, ko X)), 0> € SCKD.
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emme 8. F S (mMoLy fam ma) D, Ko Sk & of course, only a method for introducing abbreviations in
O LAt ]

a 31 124 thod without he 1t £3
‘ Ken, €k D, [Tl m) 3, ~ B, ()] systematic method without having to state explicitly
| ¢ what the abbreviations stand for. This method has oftem
' . D% € S(K) =, <Dl X, &, (L been wsed to great advantage in the litersture.®S It
; <Dk, K, L2, 8), 4> €S(k)] ))J D> € S(K) not only shortems the proof considerably, but it emsbles
i the reader to concentrate on the essentials of the proof
tems 9. b, €Te D, Ac (ML) Laym,)D meTr . v

rather then on the symbolisme

emma 10. b KE@ D, K kD, weTe =, XEZK) Bew’ ©
i ( Theorem 2. }- eurf('M) Dm me lr,
| D,. <Km>eSk)
i Proof: Ve shall chow firet that ir W is an
i
“‘ Lemm 12. |- £€wD, kewD, (vt KD (k%28);m > axiom of T, then € Tr.
1 3 Tr
eS(K)]) € Y(w+Tz). Next we shall show that if w&Tv,fmg €T5)
= and W, follows from Wm'(n.nd Wo,)by o zule
£ there is such a t, by definition of Z (K, descrip-
(1€ thewe i3 i G = of 7, then meTe .
tion axiom, and Temma 5; if not then it is obvious :
e Yo Hence every step W, in & proof of T mist be
since w .
* ° )0 such that M &Tr  (by induction). Hemee
the the =121 follow.
We now proceed to prove the second theorem. This is a coren *
shell make repeated uses of Rec 1-Rec 7.
formal theorem of Z, expressing that every theorem of T is e i Ree
t will always be in cases where k =K, or
true. Since the proof is very lomg, it is comverient to use Tl always < i
t 1t 1s clear that k, hence thiz
the following trick: In several places we shall use the : Bt leas s clear En
{ 11 be omitted. Similarly for clauses
English languege es & substitute for Z. It will always be § eclause will be 4
done in such a manmer that it is clear what its formal amelogue like M &

is. We shall say *if # then B " in place of LA DBJ . :

"A is an element of B® in place of "AE& B," etc. Thia is,
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case 1., W, is a substitution instance of a tautology.
P e Px
sy W te D Wy o0 Wy rl)
where 3 is a tautology AN DyseessPye
KRy madE S(Ka ) =y XE (K ) oo

S o N S\-‘I(By Rec 5 and
D <X, M€ S(Ka) o+ ¢ Xywi) € S{Kkm) V'8 repeated.)

The last clause is a substitution imstance of a tautolegy,
hence a theorem.

o X € E(Km) D, Xy € S(Ka)

L omeTE

case 2., W is wmlgvllwmzi). me, Vvl‘ w“‘a
e - ama WL my)
Tt Wngve W, Doy , Wonr 3

Y vz, Wana )

Wggpe W, D Wy -
Cx,m> €S (Ku) 3. XE Z(Ka) 4.
KXywadé S(Kmd D, Kxpmwu )€ (37208,
S (K ) D, <Xy mea> € SCKe) !

i

Wanybe

30
suppose - XEZ (Km), <Xpm3deS(Kew),<xsmineS(Ku);
T eV(oxTe)D, .

then

LD Ky X, 2,56); 5D € S(Kaw) (Bec 7)26
- € Y(wtTe)D, . KD(Kauy X, Lpy8), ma > €S (Ka)
3, SV Ky X, £y B),m2>€ S(Km)  (8ec 6)
v te V(wiTe,) D, . KXpMd€ SCKw) D,
LD Koy Xy 2y YW > € S(Kam)  (Lemma 6)
BE Y(wHT2, ) Dy <KD Koy X, 2,6 ) ma> €5 (K
u (K meyd € S(Km)
Hence K& Z (Kudimplies that <Xawy D> € S(Km)D,
CXpmar> € S(Kae) D, <Xy mp> €5 LK),

oXE Z(Kaw )DL < Xpa> € S (Kew)

L o meTm

(®ee 7)

(vy)
1
case 30 Wt IV Wobls, ' W, 1]
o
where & may be 7y or “’vlzwmg)’ and.

Te, € Te, . ant no free varisble of A ia bound

in \ﬂ’m|~ (W, s W%; Wm,;"
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.<)()m\.> €S (Kw) T xeE(Ka) & . <Xy made
S(Ka) D, <Xy mud € S(Kuw)  (mec sy

It 4 is '19’ let b, =u(1y, Fps =)

1t A s ("“’12"/"‘2)’ et b, = (Lt [<D(Enx.25.8) 3 € S(K5)T ) ;

suppose X € S (Kan), <X, M2d€ S(Kaw),
then bt €& WY@ -a-Ta.):,.(‘D(K»-..,)u.-s),m.)e S(KwkReC 7)
. t, € Y(e¥Ts,)

(By deflmtivr oft(k)
or by Lemm= 43.)

.ty €Y (w+TR) (since Ty €71 1)
o DKy Xy L1y Ba) 3 wn > € S(Kana)
o Khymy) € S(Km)

(By lemma 7 or 8.)

X €5 (K D <Xy iz €S (Ka) D, Kyt y> €5(Ken) |

X € Z0Km) D KXywm> € S(Km)
S o e e
case 41y Wy ts LLim))m) = ", SIS RN =T SLRES
SN
W, te WMo dWoo Wots Vo Wa:

where T, =T, =T +1.
" 1 3 Y

3
KX, m> e S(Kw) 2,0 KEZ(Kam ) & ¢

Xy m1) € S(K )3, <X Ma> € S(Kma)
suppose X € Z(Kw)’ LKKwe, > € S(KM))
then te V(UPT&.)D"- KP(Kone, X, £, 3,

ma> & S(Kam)
T e WrtT2)D,. MLy K, D)

(=ec 6)

(mec 7)

My K, D)= ME, KmJ'D)eHa,_,K,.._,‘D)(ml 5, 6

peated)

te W(u-n—‘l‘;,,):)t_té MLay K X) =
t &M (L, Ko, X)

te M(/—;,Kn...,x)J '(:éﬁ”(,.ur“)(si -
noe 13 27y

te ML, Kaey X2, T e (weta,)
T & M(La; Koy X) 3, 5 €M Kuw,yx)
M L2y Kan, X) = 1 (Z3, Koy X) (852 axtom)

=1 +)

Tt 12 now convenient to make use of the following emsily
provable lemma:

Lemss 12, bkew & K (2)22) €k D<K, 98, 2200
€S(K)=y X € Z(k) 4. M(Lyk,x) = MLk x)
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o x> € S(Ka) (5 1oma 12.) mon I <D > € S(Kwa) b, 4 € ¥(04T2,) 5, .
o omeTe (45 in previous cases.) D Ky Dy, 18y mmeg SES(Km) D =t

Jt. <D ) & S (Ko ), are ¥ (BeT2,) Do

case 5.b Wy ts [V Vvllu[w,:;:«/mz]] D Whay : " DR ot 3 s € 5ol “ S"F(l . sxnee
" 2 N 45 5 [~ !

wnere W, 38 S(‘_\’L) \,/“JD%;,\,;_‘_:%. ‘ vy Ky Layes J e w)gt 1omg))

Wags S LE'V.. mw,,“\ U % 3t <D, e >€5 (Ka) b <Dl Kew, (aggmment os in

X Lo i), mmyy €5 (Ru) Qe 4o =T
Wy i S U)W I .
® e : : At <Dy > € S (Kan) ds KD Koy D(KamsX,; 23,000,

-1:124 T1ps w0 varieble is both free and bound in £, w)) > &S (KD D, o=t (o 729
W, » a0 vy, doos net occux in Wi . 3B <D > e SR b SD(Keey Xy z.,w), -

€ S(Km )R, o=t rana. 6.)
1t Ty = (LB LD (K, % £y B), o > € SeK-IT)
then €D (Kame, X, Ly b, ), w1 > 6S{Kme)  (Doser. axton.)
& S(Ka) d <Dyane) €S(KaD] (mee 5. 6 72) SK At
TKxma> €50h) T R T W)
+ A6, <Dy > €S(Rw) - D madE S ) -

suppose x satisfies {on level Ky) the fizst clause of W

then _ . €W (WHT) D, [<D(Kam,y X, Lyt ) i

o wmeTe (ms befors)

o 3t.4D md €S (K)o wre FHTen) D b
LD (K Dy oy )y s> 5K D Sase sy Sigpons e sepiess tha Sesemigtion e
(15K s Dy Do L, a0} =ML SEp DK s Do Lo ) Ty the cholce axiom: (Then we are allowed to
24K P{Es Ds2a0 " 2 use the choice exiom in Z.)

(5y Ree &, 7, lewm 12

a

Wa
W, 1 [~Ym wmlja W, s wﬁ;}.a betore.




1f x satisfies the £

tmen Fb, KD Koy X; L1, t)merd & S(Kam)  (Fust ss svove.]

et Fy = (65 [4D Ky XLy b )M > €S (Kons)

D LDy (g Xy Ly Bi)ymni SE S (Ko)
T XD € S(Ka)

clamse {om level X.),

is free and bound in Wi,

4 e eTw

.

sase s, W, s [W¥g, ~wm,;|;1:(w,,,m,)=tm,wi

cnere Wagts Ty N 2. ) (V23]
aa Te, = Tza =Te,+ 1.

Suppose x sati the first clause (on level ),

e 6 € WowTe) 2~ KDy Xy i), mi] _ (mec 5, 72
€ s(

v N[EE Y(wiTe,)]  impies the 30, henee that
~ LD D6 S (Ka)

oY~ KD > € S(Kw) ]

v E[ED i €SCKe) =0

et by = (bwr [<D Ky XL 2yi )y DES (Kw)])

then LD (Ruwy ¥y Lap#)md € S (Kaw) if and only if

(zemma 5.)

call this set to

= él{/(u*’TL;)DG- ~[zewd (pecs, 7, 1.}

(Chotce axiom.)

{Lemma 8, since no varisbl

(as vefore.}27

:

1
1

Ve, ~[zew]

but sines Ty =T, |, this means that

So this car happen just in case =0,

+, =0,
f ©, =t,.

Then (Deser. axiom.)

Then we can show that x satisfies {on

K,) the second
cleuse of W_, by Ree 4 amd a proof lixe trat of Lewws 12.

L e

. (s befors.}

case 7., Woois [W, =, W 1o Cm W) =W, 3]
AT Tl T ) 23

et B, = (bt [CD(Kmwy X &5),00> €5(KedT)
0 Ba= (LELED (Koo ¥y oB)pwead €SLKw)T)
Suppose x satisfiss the first clause (on level X},
ther we have to show that t = t,, then we can proceed as in
case 6.
But then we have T & \l’(u-’-'\;;):z‘. D (Key X, 2,8),
> ES(Rm) 2 4D iy > €S (Kaw)
KDy & S(Kea) B ye KDy er) ES(Ha)4s 1r lomma 11.)
- ti=ta

(==¢ 5, 6, 7.)
then

{Extension,of @escr. axiom.}




case 8.,

but

Case 9e4
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W, s ~ Vv1|~wm2
mere Wawy 15 [(V,)(2.) S, W,
~F(Rym), TeeTp, 4t
<ywmd> € S(Kaw)
€ Z(Rm)d T, L EWLFTR)F .
LD (K %y By By ) € SCKa)

XEZ (Knu) & 36, T € Y(rTR) .
A e P(@FTR) D oz, wr €T 2. <D(Kamy

D,y Loy ardyoas > € SCKaw) (o0 1050 5 7]
XeE (Km)ddt. t&F(E+Ta)% u.vew:.m;,):
a2 D (Ko Xy oy Y o013 €5 (Kam) (o 29
It te Yo+Ta) s,
wretz, LD(Kamy ¥y 23 wr)ymard € SCKa)

(Lemsa 1.}

X e E(Ram) Dy x> ES(K) 4
S omoeTe

if and only if

(By Rec 7 as
in case 5.)

1
i
H
e WCotTa, )y |
i

W, 1s an instance of tbe axiom of infinity.

ret W be one imstance. Then W, is gotten from
W by o series of alphabetic changes of bourd var-E
ia’bles 1f we can stow that Mo eTm, it will ra:-é

low bty several applicstions of lemma © that A€ Ty

38

We make use of Theorem I to prove #be € T E Wy«
Thus it will be sufficient to prove V'.

) Instead of stating W, , e state W
g
!
V“a s of the form I Xy, K,i— AXo A,

wmere B 1= [Ke T 3;,” [<3, X->é><;] <+, 7;3,(‘
32, [Zo & D, 4w eXD. T3
<5, A€ XgD, <Py >EX3]D Jike.
W& E2 D, <Bo,Un> €X3 2, o €% ]

ot B e (X Ka€Xzzy . Xa€W(ura) s

3 Ko FJo. Ky=<ho/od b Ko€0 )
X.€B By Kk Y(wr2) . FhoTZes
= <Xg) P> k. Xo €T

(Lemms ITI.)

Xo EW(D) & 3o € ‘t’ln):) ize’ . <Xy Fo> € Plesra)
X €W () *Fot€ Wﬂ);*_,a“ <xo)> €B=X€30

Wi © 3X3 3Xe- Xg 2k
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S X[ ehl| 2. BeW(wrs) & [06¥)

& T D, ~[3.601] % %0, 3w [E+

F:w.ur,exaf?: 47&4#31:'.&%.]:0
Ao [T o £ Dy, .t.e’u....t,ex.J

BeY(wr3) 0e¥@); Vie. ~[3o€0].
So the first two clauses may be droppsd.
p<d X, , then every element of X and every element of an
element of x is an element of W(). 4ana if W, , teen ell
clements of b, are slements of P(I),

$5 X[X; 4Ad|= K O I [T ok [wnex

4—4:',54%]3 «!'-ﬁi-.,]sl‘u-.[u.i-t,éu.s to€x]

2 Bg ot [wo€X & Vo €46 ] D, i, ToE 2oy
then Ap € K g, ¢+ Mo E o
- % e PPN

" hove 12 snaw, MEW , am 2o €YW)
. X € Y nence Xy € Y().
o, etw) k. T X =, To€X

men X, & Pzo).

e AW [T ¥ Lo 8WeZg, to&ki]

soSE Ko [Ratdl; - Wk,

20

This corpletes the proof that if Wm is an axtom of T,
then M€ Ty

Rule I., v €Tvy maeTe; ans Wma 15 [ Wiy D W],
XEE(Kumy) Dy, <Xy m1) €5(Kany)  (sincn w, €T
X € Z (Kma) Dy, <Xymi> € S(Kma) D,

Ry € S(Kuy) (R0 6)
Koan, ¢ Koma
X € Z (Kma)D<Xmde S(Km,) (atnog wnTr ant

X € Z (K ) 3,0 <Xy €S (Ko
Ko € Ko

Soom el {Lemua 10.)

Rule IT.,

oy €T ant Woyse [V Wi,]
K, £ Ko

X € E(Ka) Do <X € S(Koae) ( 06T
and lemma 10.}

Xy > € S(Km)=,. X € Z(Ka) &,
eV (WHTa) D, <D(Kam, X, 458, wa>
€ S(Kam) (rec7)
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1 XEZ(Km) tmen tE€Y(WHR)D,.
D(Kawy X, L)€ Z (Ko,
then T € Y(W+TYD, .
<D, mide SCKmD.
S XEERm) Dy Hym> € SUKm)
S wmeeTe

This completes the second part of the proof.
Q. = D.

Corollary II.  If L—r_ Wor  tmen b wh

Froof: suppose = Wome,
tnen it has a proof, Say of mumber Xy

then }'2 3;—0(,»-»)
" ‘3 Ee«r; ()

. \—i_ weTr {Theoxem 2.)

( Bf carcutsble in 2.)

]
. }-a_ W (Theorem I.)
Q. E. Da

We could also prove the formal theorem of T:

& Bew—i—(x)%‘ 31'"5()0.

42

Corollary 3. k= 4
£ .

Proof:
Tet Wmu be the w.f.f. of case 9, theorem 2.

’
Wong (Proof given loc. eit.)3d
~ [~ Wad, ]

’
~ w”“}‘ {Same as previous sten.)

y;lggcu.) ey = w,jq‘w (Proof by mh. 1.)
BewrlNegomar)s, Negma) €T (Taeoven 2.y

’ / at
S3e we(Neg(wa) D, h/”‘“mq)

~ 3«»—; (Neg (we))

/
~Cr D, xewD Bewl () (vers wmown)
~CrD Bewl (Ney cm)
/

Cr

Q. E. Du



Corsllary 4.

Proof:

Corollary V.

Proof:

43
k CcaoCr.

We carry out the formal analogue of corellary IT
in T, to prove

Bewr (03, Bewy .
Write down the proof of W, (comsisting of

ome step) im T. ZLet its number be k. Because

B in catovtamao 1n 7, 7o con prove
B (Rymo)
33«9.1. (o)
Breiwy (e
CaD~ Bewy (Neg.(m)

o Beury (Negimas) D Bewri-(Negoeal),

Corollary VI.

~Cr D BewpNatwy, oo s,
. Cz- 2 Cr.

Proofs

Q. E. D.

ty CprDCa if and oniy if T and 2 are
both inconsistent.
If T incomsistent, then sll w.f.f. are theo- ;

rem, R Cr D6,

e CrDCy, tnen }—Z.C,lﬂpc; (cor. TI.)
i-é_ CE, (or. 3.)

Z is inconsistent by Godel's theorem.

B Wapema By W, Neg (e

b Bew(na) 4 Ben, (Negiwa)
k~Ca

b ~Cr

T is inconsistent by Rosser's gemeralization

of G3ael's theor

Q E. D.
The 56t of integers lv is not defimabdle in T.

Suppose there were a w.:

of T which expressed
the property of belozging to Iy . Then there
would be & w.f.f. expressing the proverty of
not belonging to Tv . We could then find a
Wy, which expresses that m doss mot belong to
Tr .30 mmat 15 Wol =~[meTr]. suw
Theorem T., Wi & [ eT]. contradiction.
Hence there is no such w.f.f. in To

q. = 1.5
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orems are true even if we weaken both

The above ¢
systems by replacing (5+) by (5). (5%) is used only in

it was shown that it is needed in Z

theorem 2, and the:
only if it is used in T.

46

3. Extensions of T and Z.

"Fearly thersl® the Queen repeated. .
"Why we passed it ten minutes ago.®

Due to Gidel's theorem, no one logical system is ade-
quate for Mathemstics. We must always comsider stronger
and stronger systems. So it is natural to ask what the re-
lation is between extensiors of T and Z. But it wili turn
out that the methods of the lest chapter ave sufficient to
answer this question. (Dxeept for an additional complica-
tion due to the use of only ome-placed predicates.)

The essential difference bstween T and Z 1s in the
method adosted to avoid the vicious circle paradoxes. In

T this is dome by going to = higher type When we define a

set of things from a certain typs. Thus larger sets are

introduced in higher types. The natural way to sxtend T
Ve consider =
2
o g w” .

e to avoid the peradoxes by restricting care-

is by the inclusion of additional types.
series of systems Ty , for crairads ¥ ,

In Z we hoo

fully the existence-axiors. YLarger svts are here introduced

by mew axioms. Our series of extensions will differ from z

tore. The axiom will

only in the addition of new =

= ich cenrot

guarantee the sxistence of the least cerdl
be proven to exist in the previous system. We get 2 seriss

of systems
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T have seen only ome system of transfinite type-theory

so far which was worked out sufficiently in detall to cov-

vince me that it is adequate. The system is based on axioms

end definitions dus to A. Church, znd the system is geveloped
4ail by B. Bustemente in his Ph.D. thesis.®® wa-

ned.

in great de

fortunately thic thesis has mot been publi
stex is & type-theory with varisbles

The Bustamante s
types £ GTH L . our systems Ty will
and in no ’l“ will we admit

angirg over

e subsystems of this one

z
veriables of type @' , because there ave some questions
level. But it is clsar thet our

as yet unsnswered on ¥
results can ve sxterdeﬂ, probably to ail types which are
constructive orairals.”

e shall make a few other imessertial changes to brirg
tc & form closer to that of T. The

the Bustamante system i

sost Lmportant changes are caused by the fact that we use

eur

exiom schemata snd the [ -eperatoT. Furthermore,

system type O is empty, =nd hemce type 1 corresponds to
Sustamsnte's type 0. This simplifies the correspondence
We mow corstruct simultaneously

o< rg W

rctem, ¥ must be understood fo e a

between Ty end the Zy.
for all ordirals, ¥)

the systems Ty
In the following 53

fixed ordinal.

Inis system is described here inm detail, becsuse 1
feel that it is interesting in itself, quite aside from
14 relstionship to this tmesis.
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The logical system T*.ﬁ

Primitive symbols: N
o Ay nen G101 % D
(where & is
Vo Ly RS

)
w.f.f. and terms of type o{ : (Definition by Tecursion.)
1. If ay is a variable with subscript e . then (s )
is e t2rm of type & .
2. If a, is a varieble with sibscript &, and A is
a w.f.f., then { L Gy S ) is & term of type X .
3. 15 A, Fo are w.f.f. and sy  is a variable, then
[~A], [A-DR], [Vau &] arew.r.z.
4, If & .
hof, P By 70 terms of type o, , oz, ther
[ Aa, Bup] s & werut-

5. The sets of w.f.f, and of terms of type © are the

smallest sets having the four above properties.

Convertion:

g s By e s7e vaed to stand fer verisbles with sub-
Tip

<.
A v By »eee  e¥e used to stand for terms of type o4 .

A, B

ol® stands for {b(+| i O is of the 1st kind or 0
® kin

sre used to stand for w.f.f.

£ o is of the 2nd

e introduce all the usual abbrevistions. In particula:

j 2o, Pokg, stants fox EC“: a’oh]' [5‘3‘&‘1]
where
oy = ey («t.,-«,) L
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B ctands for (b Jgune [osel “@]Ea‘( o)

(byqq mot free inse)

4 b (K. Yge. ~DXited)
Axiom schematas
1y A where o 45 & substitutior

instance of a tautoloZy
@ AR D.ADVa, B ay mot free insh
o [vay il :[5(;:0,4'] Ogttugea mo groe var.
8

iable of Beg, bound I

o [ Une) (a4,) =0, ", (€, (@ 108 =6, 1 4
(170 [ Jay AT DLS oy Al ] SRR
(6) [ Vay.~#]DL(bayst)=0]

m [A=, B> [0acd)= (B

(8) 31\'.‘,_4 Eﬂg’_ a-_(.] Za., A At fre:(lizf“
(9) ~ 3o, Qo =Ce

a0y Coge ke, 1036, G=h, o, <oty
(1) Vo 3. 2G5 [GS AT oor 2

(12)37 &‘g a, > 3. C‘I=ﬂgz oL, ot 2ndg‘\:i<n:)1:

30t (13 [Garmer (Buwenn [Eeomen = Eestm-p])ID.
[awntt from %_M' Cu’ Comdam Dy dram ’

D Gt Com] D, (B Lon=fand)s

Bules of inference:
[1) From A sna [ADBIT inrer B,
[1:1] wrom A snrer [ Va, .

Wext we construct the systems Zy. They differ from z
only slightly. To get Zy, we first of all emlarge the list
of variables of Z. We allow as subscripts for the variebles
any ordinal ®), O < X<eIk+| .38 we define w.r.f. and

terms in a manner znalogous to that used in Z. The rules

and most of the axiom schemats remain unchanged {(if we remem-
ber that we must sllow the new varisbles to ocour in these).

only (9) is changed as follows:

We introduce a formal definition which expresses tie

following recursion in the system:

Y(0) =0

Y et = PYe))

Yist) = o breas, 36 Bt
L e ¥(B)

if O of 2nd kima,

In 2z, we simply drop (S}« 1In 2, we add the axiom
W(WK)I#FD to the axioms of Z,. This guarantecs the
existence of wW(k=1) the least cardinal which cannot be

proven to exist in Zy.
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) The systems gert
We can essily see that the system T is quivalent to Ty, stems we ave considering ave T { O W WK+I)
and Z,, instead of T ard Z. Thus the abbreviati +
ard Z to Z,, The results of the previcus chapter generalize 2y abbreviations must be
changed accordingly. For example, Ig now stands in 2, for
follows
: @8 folle 5 < wk+l the type of the 1% varisble of Ty , and IS eV (m) mst
For any k 2 2, we can mep any Ty » -« B
46 e replaced by By (um) which expresses in Z that w.f.f.
into 7, and prove the analogues of Theovems I, 2.
. number m of Ty i provable in Ty . A further chenge mist
The mapping is defined 2s follows:
B be made to account for the fact that the type O now corres-
; T stends for [ax € LGN} ponds to  W(R) , not to  Y(Wel). Amng the abbrevia-
i = (. )* . (@) tions this is handled by letiing Z. (k) stand in 2, for tne
] s
: 3es S a4 ) set of k-tuples whose 1'P member is an element of Y(Tz) .
[ 2 (LagA)E e (Lo - e
i 3 " . And tnese are the only changes necessery to get & truth-defini
‘ o [~ A 1 [~AT]

tion. 85(k) snd Ty~ then give us a correct definition of
* satisfaction and truth.

* *D3R
-4 [AD R3 is LA 2 J - In all theorems and lemmas we have to meke the same
| [VG.{ *]* is [Vc.‘. & DA ] Furthermore,

. * 2 A¥ ] terms 2ike W(w+Te) must be replaced by the corresponding

. B % e LB, €A .
¢ L AL >

W (T2) . But these changes are also sufficient to get
: correct proofs in all cases except theorem 2.

changes in the abbreviated terms and w.f.f.

For every w.f.f. Pr of Tyl ¥ < LI+, we

In theorem 2
detine & wat.f. B’ of T, its trapslation:

1 we must also consider the new axiom schemsta. Let us consi-
12 Ac has the free variables s e, »e++78 &y * theR 13 der this proof.

N [[&x &k TLID 4‘__**} If, in o We will have 12 cases corresponding to the 12 schemata.

artioviar, # hes no free varisbics, tmen & ta AM. © (The rules are the same as for 7.%l) cases 1, 2, 3, 5%, 6,
This gefimition is the complete smalogue of e de“m‘m:: and 7 are the same.ss before.l 1n case s, g, $ Tl =Tz,

gtven for T. The formal proof of the anslogues of theorems . ., op

‘qu-l =Tz, = TL= . But this does not change

1, 2 1s therefore very clese to the ome given in the previous the proof; as a matter of fact, some such condition is

chapter; 1t will auffice to indicate what changes are necesss:
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necessary for the steps
t € MLz, Ky X) DO t ey ()
t € M(2y, KmyX) D, T € Y (=)

in case T_‘g‘) Te, are of the second kind. .
In case 8, 12, >Tg, instead of T‘,I =T&+I but

the proof still holds.
case 9., Wois A~ IVe. Va=Ve. Te=0.
e Wove VpFEV
x satisfies W (on level K} if and only if it satisfies
W 1, Wy or
&€ Y(0)D,- <D Kone, %o )y, > € SKaw)
vt. ~[te¥@]

ot
S eTr as usual,
come 100s Wats [V2, 2, 1D~V %, Ty ¥ Yo
Te,=T2, 5 T2.>Te,. :
et Wyve YUy Vay F Ve

x satisfies W, (on level I) if and only if
LM (R4, Koy XD € 1 (L) Ky X1 D
~ [ %ymr> € SCKw]
or LM (L2, Koy XIE M(L1;Ka; x)ID.
~ [6 € ¥T)D, TEMEyKat)]
or [ M (L)W, X) € M (L, Ky X)T DI,
LEe¥(Tas) 4. & = MLy, KeX]

but MLy Raw; X) & P (T5%) 5 hence the fizst clause
1s satisfied only it M (a, Ky X) € W(T2,) 5 tnen
M (L2, K, X)

JoomeTr  as usual.

satisfies the second clause,

The proof of cases 11, 12 i somewhet lemgthy, because
we have to make use of the properties of W quite heavily.
But once the properties of ¥ have been developed, tnese
two cases give us mo difficulty.®® Case 13 also depends
on the properties of Y . The simplest method in this case
is the ome used to prove case 9 in the previous chapter.

Theme fow brief remarks should suffice to show that the
results of the previous chapter can be extended to the systems
Ty ez

For the sske of completeness we include an informal dis-
cusaion of certain other truth-definitions for the above systems,
First of a1l we mote thet the systems Z, correspond. very closely

to the aystems Toypy. ¢ ANd, 88 the reader cam easily sec, their
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intended models are the same. But domehow Togy 4 18 €00
weak to represent the imtended model; this is due %o the fact

that sxiom-achemsta (12),(13) function properly for type ik

only 12 we have varisbles with subscripte Wi+1. ‘This seezs

navoidable in a purely type-theoretical system. If we attempt

o corzect this by sdding other exioms, we sre led to a system

which is almost exactly Z,. It therefore seems matursl to {

roplace Toy gy B Zxe S0 We defime:

2 1f T2k i

Iy te {Tr otherwise }' i

We mow write all the vaviabies of Z, with subsoripts @I

taen 7, becomss o sub-system of Teykwz. + 04 the naturaines)
of our series is geen move clearly. Ve thus get a series of
systems each ome stronger than the previous omes. Indeed, we

shall demonabrate that a truth-definition can be given for

any system in the following one, if the latter system is
sdequate for recursive arithmetic.%2 In wiew of these facts
1 would say that type-theory and set-theory exe not two

fundementally different kinds of systems, but that set-theory

is the first 1 YD , end that the extensi

astepping~-stones” of the type~

of set-theory are simply the

theorles, L.e., the systems introducing new kinds of trans-

finite varisbles.

omly the main ifeas of the truth-definiticn will be given.!
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Let us choose a fixed system Ly for which we are %o construct
& truth-definition within I gpa) » where L T+l is adequate
for recursive arithmetic. We shall further assume that ¥ 2
@+ , for reasons given later. If =K (then K>2 J,
then rl=wk+l, Loy = Ziok B hence we can give a truth-
definition as shown above. So we may assume that & is of

the Pirst kind; hence &-| is the highest type tevm in Ly .

Tn Loy, e have terms of type ¥ .

The most important trick is to be able to represent k-tuples
of type ¥—| within type ¥=|. We now proceed to outline one
method by which this cen be dome.td Since we assume thet L,
s sdequate for arithmetic, we will feel free to use arithmeti-
cal expressions without explicit definition. Suppose B-=|= Wi+,
We represent k-tuples of type L as classes of type wi which

can be interpreted sa one-many*4 mappings of the set of k mem

bers upon the set §1,2,..., k}. The 12 member of the k-tuple
is the sst corresponding t6 i in this mapping. Now suppose we
‘bave accomplished this definition up to type wh+m, then
ketuples of type wiina| will be classes all of whose elements
are k-tuples of type witw(a concept already defined). The ith
member of such s k-tuple will be the set of all 1°® members of

1ts elements (a concept already defined). More precisely:
1., ja, stands for (bug. [Cwsdwels .
{ um&!-u.} C2Y)

dewa=awyVdas=Los)
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2., Qg ,trsg) stards for f{n—ug)a.g.,})i%,,,ﬁ ‘1
3., " fa,p is @ one-mny correspondence®

stande for [ Aras et D, FCese dwe.
we =< Cug,daur >l [ e <Cug,dwe>

Deadess FueCur;dan>Dp, o Coa=Cuel

4., % fh,gie 8 k-tuplen stands Tor * PP p—
ndence o, A Ebﬂ"<n”‘ucm.ﬂ=‘§
» Cgis 2 positive integer £X" !

o MG Ky fyg) stamis for (b " Srog is @ k-tuple”
Cénye<@uean , ¥>7)

en stands for [lresge na) Rwley

Pausm

wmgenis 3 E-tuzle

Scheme
Tes

ML, K fuszens) stands for (t2wrne »

By pawa 1® @ ERLS" e [ Rostnn Costan]g,
Fdusgan. [apenstdegm] + M0k dosen)= CJ
=y m applisations of sckemes 6, 7, we get a definition

for = Brg.y is a k-tuple" and for Mlik, o).

Te can now comstruc

the truth-definition in anzlozy to

that given in the pr & chapter {rememberins, however,

in the defirition of w.f.f.]

that slight crenges kave been mad

%

K, €, €1, D, ete. are defined in enalozy to the

previous chapter. X, 1, m, n are used in place of variables

of type &, the type of the integers.
6., Reck ap stanis for LL 31T L2, €,(M(2 %),

L0, 220 4 ML, ky M2 301))

M(La, k;, MU 2 8500012 [oy32-a]1
staras ror L[ 3L, Im. €2(M(z;2%-),
Loy La)ek, (vEpey - F2p MlbD B )=
Dy ML, Jo1)y 2y, bpa) 4 M2 2 Bp)=
o+ Lay 2y 1) MU, b M, 23510 [0 Fe-1]

10.,-12., Reck ay ..., Rech sy in avalogy to previcus

chepter, just like 8 and 9.
15., wed ap swams ror [[ UM (1,2, 5) i
s ketuplen o, " M (2,2 Fya) 1S

an irtezer” dh Kp(a,2,%35-0) £k I3y
fodk g+t * b ek 0]
for '/l\r-l- Reck Xy Dy, [ Xer Fom1]
a is an integert o, " Xp ts 2
mpetuie Dy A%we M2 3e-1) = X
4 M (2,2, )= m & L8974 ,)]

i
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The proof that this truth-definition is correct (i.e.,
the proof of the snalogues of theorsms I, 2) is beyord the
scope of this thesis.

This proves thst we cen give & truth-definition for Ly

Within Ly » f Ly 15 242 and adequste for recursive

aritometic. Obviously ¥his can be generalized tor We can !

i SO Bpand HiFa+2)

give 2 truth-definition for I‘l’,_ irn Lr‘
(since each i

ond Ly, edequste for racursive arithmetic.

system is an oxtension of the previous systens.) ‘
e mow procsed to show that Ly 1is adequate for recursive

¥ 2 wtd.

thet Lespais adequste:

arithmetic if or this it is sufficiemt to show

If T gep OOFtaips many-place predi

cates, this is vell-imown; however, our Lespa, 18 also ades

quate for recursive erithmetic.

In order to show thet a system iz sdequate for recursive g

rithmetic, we mst show that netural mumbers oan be defined
and that we cen define

addition and multiplication 3¢ 35 to

have the wsual properties) and that is all we meed fo show. 4%

We define the set of natural

o, @y stanas for  (Udrg, [y CulBg,. #sCa Vdu=Cia)

15., Ny stonts zor (vZeam. L[ o 1%, [ Xa] |

Sy Lror 86112y, » Zan Elon

20., 15 an integes=r stands for [ N el [-]

a3

21.,  Mag i
2¢y 13 & positive integer € k" stends for

[ Neswi @py T4, 2a#6 ¢ Lkaal

We then use definitions 4 and & to def:

e gy 4
w s @
k-tuplen and K(1.k,a). T

cg these ve can define additien
and multiplicatio:

22, [Quon <Kus, Fea, BT stonts ror Ftus . vig, is & s-tupler
4 M3, Bu)=Xad MZ3,8.)=0
St M (33ba)= 2o [ Ventol

22., [Ko+ 30 =B stanas 2or [[ Ve [@eors <P 8 Pd]
4, [Qoai) < Feoy Yoo ; Su>T D s

Locon <o, vl ;55 112, Lovesn Ra'b 213
5., [Xeo * oo = Bus] stanas sor [L VP [Cws1 <Ry, 6,05]

4 [Beon < Go, 1o, 5031 e,

[ Sewt+Fu=tol D, [Bun 51T Da .,

= . . -
Te again omit the proofs that our u'efir:i‘zf\m‘[s L

but they are close eroush to standard definitions to meke the
proofs easy. )

This yroves that any Ty » ¥ 2o+, is adequate for re~

. 147
cursive arithmetic. So we can now sharpep our previous Tesult
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Footnotes.

to reads “We canm give = truthedefinition Tor Lgy In Iy s
15 %> ¥p ana T) BOFA, But we can alsc show that these 1 see [4], 5. 224

corditions are necessary.

Tor = good discuszion of the

istcry of thess evstems

15 ¥ KP+R , then Ly has medels (e.8., th
see [0]. & R nere e ses

©oniod moae1f®) in which all ssts ere fimite. Hence Trg 1. Altnongh the systems theve dsscrihed differ

somewhat from T and Z, the refer

cumbers cannct be

(for sny ¥ ) and the set of 211 natural
the omes thet azrlr to this +vag

(21, Bl [3ede Delo

aefined im Ty, » since they are both i cipits. Sc¢ this system

ox for a truth-defini his yaper 13 aiso the onliy

not adequate for recursive aritihmstic

con~

tion. 1f ¥aP W, , then it is vell-known that mo truth-def:

out this peragraph that all | seon s i and 2.

i tiom is possible. (assvming throw
the Ly ave consistent.]®® R mhe essertial difference is thot guire's systems con-

tain no ax ¢ iz alsc

We now get the following theorer

the iressential

ca

*Urelemente.”

" fheorem ITT. If 211 our Ly oxe ocomsl
T Ly, 1Dy el

=l a truth-defi

= 1 omy 1 &> Fa ard T 2w

3. The basic idees of T are aken from & system due te

“system in that

Tarski, see [13]. T daiffers fzo

1t conteins avioms of infinity cheice, and it kes

a descriptiorn operators

4. These ave individual and fumetié:

set-variables); thus no prepositionsl verizhles are

vsed.

5. "W, £, £, is an abbreviaticn for "weli-formed for-

milet or for the plural of this phrases
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i 6. In this, and similer definitions some convention, ~rly : 18. See {2), p- 66. Bernays sives a aefinition of W) zor

teo well known, wmust be adopted as to walch variabi: 21¥ ordinals &, erd develops the most important pro-

eng 15 ] perties of the sets ¥ {(d), some of which we shall use

7. Tmis axiom, the cholce axiom, msy be weskened imte 3 i iter on
deseription axioms i 14 see [14].
(5 [Bam. ke $ (o) 12y, Lo, man 1D
[ ‘Ll:: i)M] yiere no varisble 1 both fres

bourd infe s By §ns and b does rot ocour in

see (4], ». =5,

16. See, for example, [1].

17. In all these it is intended that if k, 1, m are not in-

5. Tor the bistéry of this system see [s]- / tegers, or if x, t are not sets of the proper kind, then

o, Set-varisbles only. g the symbol on the left stands for O Zege M{1,%,X)=0
unless 1, ¥ are integers and x is an eiemert of B.(k)

10. Thess schemata are, in ordexr, tautology, quantifier. and 1€k

quantifier, estensionality, choice, conventional, ex-

tension of description, sudset, pair, sunset, 2o

16. This really is a set since & (K) & Y(wW+ak-2+ E T,
A

end infinity sxioms. 12. In a1l these it is intended that if m, my, mp 1), 1p

(3%) to are not integers, th

o el
11. We can agsin weaken n the relation does nct hold.

(s) L?@.A—“-S. ‘L:‘)‘A-I:‘b=(,] > fﬁg‘:i);{—»,'] 20. Since these proofs ave a1l in Zy ¥ h¥ will mean *it is

where po variable of Pr-ia both fres and bound, and & theorem 9f Z."

© does not oceux i S

f 21. This was defined earlier. S . 4o
h ster 2 are tzue if we b e T See p.

{ 11 the theovems proved in chapter 2 axe &
i ‘\\1
ARG
’J‘: i

ji

22. Where (Dof course stands for (D (k,x,1,,t)).

replace {5%) by (B} in both systems. (See fm. 7o)

23. It is convenient to use the letters k, 1, m X, ¥» 3
see [71.
with or whthout subscripts =s variables 8f Z.
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24, see [14].

25,

26.

A good iliustzetion im [10].

since V(msv 1,, mg). But these obvious Temarks Will be

omitted from row on.

This proof is actually mich simpler and could have beer
used in came 5., but we want tc avoid using the choice

exiom §f it is not used in T. Compare with fr. 1.

We could also use corollary II to supply the proof, but
in #his particular cese it is simpler %o find the proof

directly.

anis is the erucisl step of the proof. This can be proved

only by recursion on the no, of the Wefofs For this we
have to telk ahout Wy with a varieble Z. I.e. we need &
wif.f. with a free verisble X, say g Such thet for

every integer m, |-i;\.t,ﬂ=wi._ This is precisely the role
played by Ty« (See theorem I.) The recursion is then
carried out in theorem 2, If We do not have T, a11 we

can hope to prove is corollary II, which +talks sbout con-
stant m. From:this we A
Bewd (Nz,(m:g). s is too weak to prove Cp. ve

would slso meed Cg ', @s in coroliazy 4.

See temms 1 oz [11].

et oy shet Bews (Negimea))D

32,

;3.
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This proof reproduces the well known paradex of "The 1iar."
It®s use was suggested to me by Dr. L. Hemkin.

see 4], . 165,
ses [3]. .
For the theory of constructive ordinsls see the papers of

A« Church and S,C. Eleene. A suzmery of résults and a good
bibliography can be found in [8] and in its footmotes.

The model intended is as follows: The type O is empty. Type
QR+ contains all sets of subsets of sets of iype & . Type
ol , of of 2nd kind, contains all sets of lower type. Thus,
e.g.s since T, has varisbles of all fimite types, its mo-
del contains all the sets formsble from O by @ finite mumber
of taking sets of subsets; but they will coour in different
types. In the model of Tyyy, the same sets ocour, but they
all occur in type L3 . Eto, Glearly im every Ty, each type
1s contained in all previous types.

We can again weaken this to (5), as in chapter 1; all the
theorems of this chapter remain true if this change is made
both in the T, and in the Z,. Compsre vith fn. 11.

The independence of this xiom is unsetiled sofar, sccording
to Pustamante. T believe that it is independent.

This is a trivial change introduced omly to eimplify later
definitions.
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40.

a4,

See fn. 13.

z.‘ 18 too wesk for a truthedefinition. This will be provéd
Jater on. .

Except that subscripts now have & wider range, but this
does not change the proof. )

By recursive arithmetic we mesn the branch of arithmetic
doaling with primitive Tecursive funckions, We mesn &
system strong enough to serve as @ syntax language im the
sense of [51. -

I am indebted to both Prof. Church and Prof. Godel for
many valuable suggestions in conpection with the following
proof. The basic idea I firally adopted is due to Prof.
Godel.

They ave one-meny mappings to allew the same set to ceour
more than once as & menbver of a givén k-tuple.

see [6l.

That there really is such & set, or more precisely that
x{,#0, s proven in theorem 82 of [=1.

It is interesting to note thet Ty, for P2, (nence any
trenstinite typs-theory of this kind) is as strong as the
corresponding system with meny-place variables.

See fn. 35, )

see [24].

]
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